Artículos

12.10: Banco de problemas - Matemáticas


Problema 28

Expresa la parte sombreada de cada figura como fracción y como decimal. Justifica tus respuestas.

Problema 29

¿Qué número es mayor: 0,135 o 0,14? Justifica tu respuesta.

Problema 30

Organice los dígitos 1, 2, 3 y 4 en los cuadros para crear la suma más pequeña posible. Utilice cada dígito exactamente una vez. Justifica que tu respuesta sea lo más pequeña posible.

[ frac { Box} { Box} + frac { Box} { Box} ]

Problema 31

Organice los dígitos 1, 2, 3 y 4 en los cuadros para crear la menor diferencia (positiva) posible. Justifica que tu respuesta sea lo más pequeña posible.

[ frac { Box} { Box} - frac { Box} { Box} ]

Problema 32

Usa el modelo "Puntos y cajas" para mostrar que ( frac {1} {9} = 0. bar {1} ). Luego, use este hecho para responder estas preguntas y justificar sus respuestas.

  1. ¿Qué fracción está dada por (0. Bar {2} )?
  2. ¿Qué fracción viene dada por (0. Bar {5} )?
  3. ¿Qué fracción viene dada por (0. Bar {6} )?
  4. ¿Qué fracción está dada por (0. Bar {8} )?
  5. ¿Qué fracción viene dada por (0. Bar {9} )?

Problema 33

En este problema, te enfocarás en el cálculo

[170 veces Box ldotp ]

Tu objetivo es conseguir un producto cercano a 200.

  1. ¿Multiplicará 170 por un número mayor o menor que 1? ¿Mayor o menor que 2? Justifica tus respuestas.
  2. Suponga que puede usar solo un decimal. Complete el cuadro con un número que se acerque lo más posible a 200.
  3. Suponga que puede usar solo dos lugares decimales. Complete el cuadro con un número que se acerque lo más posible a 200.
  4. Suponga que puede usar solo tres lugares decimales. Complete el cuadro con un número que se acerque lo más posible a 200.

Problema 34

Realice cada uno de los cálculos siguientes sin utilizar una calculadora. Explique su pensamiento.

  1. $$ (23 times 0.1) + (0.001 times 55) ldotp $$
  2. $$ 18,45 div (0,63 div 0,7) ldotp $$
  3. $$ 22.65 - (0.03 cdot 10) ldotp $$

Problema 35

Sin calcular nada en realidad (¡solo use su sentido numérico!), Ordene x, y, z de menor a mayor. Explique su pedido.

[ begin {split} x & = 0.07 + 0.000001 y & = 0.07 times 0.000001 z & = 0.07 div 0.000001 end {split} ]

Problema 36

Para cada pregunta a continuación, elija el cálculo correcto y explique su elección. Luego calcule la respuesta (no la calcule exactamente) y explique por qué su estimación es buena.

  1. Una pizza grande tiene ocho porciones y cuesta $ 15.95. ¿Cuánto cuesta cada porción de pizza? ¿Debería calcular 15,95 × 8 o 15,95 ÷ 8?
  2. Hay 2,54 centímetros en una pulgada. Una hoja estándar de papel de cuaderno mide (8 frac {1} {2} ) pulgadas de ancho y 11 pulgadas de largo. ¿Cuántos centímetros de ancho tiene la página? ¿Debería calcular 8.5 × 2.54 o 11 × 2.54 o 8.5 ÷ 2.54 o 11 ÷ 2.54?
  3. En una maqueta de trenes, 1,38 pulgadas representa un pie en la vida real. La altura del One World Trade Center en la ciudad de Nueva York es de 1776 pies. ¿Qué altura tendría un modelo a escala del edificio? ¿Debería calcular 1776 × 1,38 o 1776 ÷ 1,38?
  4. Ocho décimas de una cuerda para saltar tiene 1,75 metros de largo. ¿Cuánto mide toda la cuerda? ¿Debería calcular 0,8 × 1,75 o 0,8 ÷ 1,75 o 1,75 ÷ 0,8?

Problema 37

Kaimi no tenía dinero en absoluto cuando cobró su cheque de pago. Al salir del banco, compró un caramelo por cinco centavos en una máquina. Más tarde, se dio cuenta de que el dinero en su bolsillo equivalía al doble de su sueldo. Después de un cálculo rápido, descubrió lo que sucedió: el cajero accidentalmente cambió los dólares y los centavos. ¿Cuánto se suponía que debía pagarle a Kaimi y qué le dio el cajero? Justifica tu respuesta.

Problema 38

Aquí están las reglas de un juego de cartas. Lea las reglas con atención y luego responda las preguntas a continuación.

  • Cada jugador comienza con 10 puntos. El objetivo es anotar lo más cerca posible de los 100 puntos sin pasarse.
  • En tu turno: roba dos cartas, cada una de las cuales tendrá un número decimal. Mediante la estimación (sin cálculo), puede optar por multiplicar o dividir su puntuación actual por uno de los números decimales.
  • Después de decidir, calcule su nueva puntuación exactamente usando una calculadora. Si su nueva puntuación es superior a 100, pierde. Si no, el otro jugador toma su turno.
  • Al final de tu turno, puedes decidir terminar el juego. Si lo hace, el otro jugador tiene un turno más. Entonces, el jugador con la puntuación más cercana a 100 sin pasarse gana el juego.

Aquí están las preguntas:

  1. En tu turno, tu puntuación es 50. Robas las cartas 0,2 y 1,75. Recuerde que sus opciones son: $$ begin {dividir} & text {dividir por} ; 0.2 qquad text {multiplicar por} ; 0.2 & text {dividir por} ; 1,75 qquad text {multiplicar por} ; 1.75 ldotp end {split} $$ ¿Cuál es tu mejor movimiento y por qué?
  2. En tu turno, tu puntuación es 88. Robas 1,3 y 0,6. ¿Cuál es tu mejor movimiento y por qué?
  3. Tu compañero tiene una puntuación de 57 y tu puntuación es de 89. En su turno, tu pareja saca 0,8 y 1,8. Ella dice que quiere terminar el juego. En tu último turno, robas 0,7 y 1,2. Si ambos hacen el mejor movimiento posible, ¿quién ganará el juego? Justifica tu respuesta.

Matemáticas de dinero

El dinero se utiliza a diario, por lo que es fundamental que los niños sepan utilizarlo de forma responsable. Es por eso que la Biblioteca de aprendizaje proporciona a los maestros, padres y tutores una generosa cantidad de recursos matemáticos económicos para niños en edad preescolar en adelante.

Los cientos de hojas de trabajo imprimibles van desde lecciones sobre términos monetarios básicos hasta desafíos de palabras. Algunas asignaciones llevan a los estudiantes "" de compras "" a cafeterías o tiendas de deportes para aprender problemas prácticos relacionados con el dinero. Los estudiantes jóvenes aprenden a contar dinero y cómo los centavos se traducen en dólares. Una variedad de hojas de trabajo para colorear familiarizan a los pequeños estudiantes con la apariencia del dinero.

Para lecciones interactivas, la biblioteca de recursos posee varios juegos en línea donde los niños pueden clasificar dinero o aprender la división decimal con monedas de un centavo. Hay una variedad de actividades y juegos prácticos que utilizan dinero real para practicar. Los niños pueden competir para contar hasta un dólar primero con un juego de carreras o construir su propia alcancía de papel de construcción.

Hay muchas guías paso a paso creadas por educadores profesionales. Lecciones populares como Money Math, Show Me the Money y Add It Up! Contar dinero hace que la enseñanza sea ágil, pero entretenida. Una gran cantidad de otras lecciones guiadas, libros interactivos y más son de fácil acceso desde la Biblioteca de aprendizaje para enseñar a los estudiantes a dominar el dinero.


Comentarios de la boleta de calificaciones de matemáticas

Nueve de los Libro electrónico de comentarios de la boleta de calificaciones las páginas están llenas de una variedad de listas para usar COMENTARIOS MATEMÁTICOS, incluida la resolución de problemas matemáticos. Una vez más, todos los comentarios han sido clasificados y organizados por: tema, del más positivo al más negativo, del más corto al más largo y del general al más específico y marcado en consecuencia. Explore y ubique comentarios en la pantalla de su computadora de manera rápida y fácil, ya que las palabras clave están en negrita y las páginas despejadas y brillantes.

COMENTARIOS MATEMÁTICOS

RESOLUCIÓN DE PROBLEMAS comentarios

Resuelve problemas al (ajustar / modificar / cambiar / alterar) enseñado estrategias con (raramente / algunos / casi siempre / siempre ) resultados precisos (soluciones). (GRAMO)

Problemas están resuelto con estrategias apropiadas, pero explicaciones incompletas. (P, N)

Comentarios de MEDICIÓN

___________describe el relación entre [insertar aquí unidades de medida] (con errores notables / con varios errores insignificantes / con algunos errores menores / prácticamente sin errores menores). (GRAMO)

VARIEDAD MATEMÁTICA comentarios

Práctica adicional de tablas de multiplicar y habilidades computacionales básicas es necesario para mejorar el rendimiento en matemáticas (esta asignatura). (PAG)

Comentarios de MATEMÁTICAS GENERALES

Mejorar académico logro en matemáticas, ___________ necesita asegurarse de que todas las asignaciones de tareas están terminado (y) a tiempo. ___________ también necesita Estudiar para los examenes y hacer preguntas, si y cuando las matemáticas conceptos no se entienden. (NORTE)

___________ y ​​rsquos notas de estudio son a menudo incompleto y matematicas libros de trabajo necesita mayor organización. Materiales matemáticos son frecuentemente descuidado y no traído a clase, lo que dificulta que ___________ aprenda y participe en el programa de matemáticas. (NORTE)


Aunque se usa menos que los operadores matemáticos enumerados anteriormente, Excel usa el carácter de intercalación ( ^ ) como el operador exponente en fórmulas. Los exponentes a veces se denominan multiplicaciones repetidas, ya que el exponente indica cuántas veces el número base debe multiplicarse por sí mismo.

Por ejemplo, el exponente 4 ^ 2 (cuatro al cuadrado) tiene un número base de 4 y un exponente de 2 y se eleva a la potencia de dos.

De cualquier manera, la fórmula es una forma corta de decir que el número base debe multiplicarse dos veces (4 x 4) para obtener un resultado de 16.

De manera similar, 5 ^ 3 (cinco al cubo) indica que el número 5 debe multiplicarse un total de tres veces (5 x 5 x 5) que se calcula en 125.


Construcción de barcos

Una empresa de construcción de barcos fabrica dos tipos de barcos:
a canoa, que tarda un mes en realizarse y
a vela ligera y tienen dos meses para construir.

  • si se cierra después de un mes más de trabajo, los constructores solo pueden construir un bote, una canoa, antes de esa fecha. Escribamos este plan como C
  • si se va a cerrar después de 2 meses de trabajo, puede construir 2 canoas (CC) O BIEN, construya un bote auxiliar (D), por lo que hay dos planes para elegir
  • si cerraba en tres meses, podría hacer 3 canoas (CCC) o un bote seguido de una canoa (corriente continua) o una canoa y luego un bote (CD) por lo que hay tres opciones de planes.
  • ¿Qué opciones hay si cerró después de 4 meses?
  • . o después de 5 meses?
  • . o después de n meses?
  1. .. a barcos más grandes: barcos patrulleros que tardan un año en construirse o buques portacontenedores que tardan dos años en fabricarse
  2. .. o puede reducir el problema y considerar barcos modelo, un kit pequeño que tarda un mes en su escritorio o un kit más grande que tarda dos meses.

¿Cuántas ideas más se te ocurren para un rompecabezas similar?


Edite, duplique, obtenga una vista previa, elimine, mueva y etiquete

Cada pregunta en el banco de preguntas tiene cuatro íconos que le permiten etiquetar, editar, duplicar rápidamente, obtener una vista previa y eliminar la pregunta. (Es posible que la pregunta no se elimine si ya está en uso en otro lugar.) Para duplicar una pregunta, haga clic en el icono de duplicar (el segundo desde la izquierda) y aparecerá una copia de la pantalla de edición de la pregunta. Puede editar esta nueva copia o simplemente desplazarse hacia abajo y hacer clic en "Guardar cambios". Para mover una pregunta a una categoría o subcategoría diferente, haga clic en el cuadro de la izquierda, desplácese hacia abajo hasta "Con seleccionados" y elija "Mover a. . "


Un nuevo icono de etiqueta le permite etiquetar preguntas directamente desde el banco de preguntas. A continuación, puede buscar y filtrar por preguntas etiquetadas.


Toda la experiencia se ejecuta directamente en su navegador web.

Se proporciona integración directa para Google Drive y Classroom, incluida la integración del libro de calificaciones.

Para otros LMS y proveedores de almacenamiento en la nube, las asignaciones y las sesiones de calificación se guardan directamente desde el navegador en archivos en su carpeta de descargas y desde allí se pueden cargar en cualquier servicio que use para su clase.

Los archivos se pueden recopilar en cualquier LMS, descargarlos todos juntos y cargarlos para calificarlos. Después de calificar, su LMS también proporciona fácilmente un archivo de comentarios individual para cada estudiante.


Razones de la diferencia entre el extracto bancario y el registro contable de la empresa y rsquos

Cuando los bancos envían a las empresas un estado de cuenta bancario que contiene el saldo de caja inicial de la empresa. Estado de flujo de caja y n.º 8203 Un estado de flujo de caja contiene información sobre cuánto efectivo generó y utilizó una empresa durante un período determinado. , las transacciones durante el período y el saldo de caja final, el saldo de caja final del banco y los rsquos y el saldo de caja final de la empresa son casi siempre diferentes. Algunas razones de la diferencia son:

  • Depósitos en tránsito: Efectivo y cheques que han sido recibidos y registrados por la empresa pero que aún no han sido registrados en el extracto bancario.
  • Cheques pendientes: Cheques que han sido emitidos por la empresa a los acreedores pero los pagos aún no han sido procesados.
  • Tarifas de servicios bancarios: los bancos deducen los cargos por los servicios que brindan a los clientes, pero estos montos suelen ser relativamente pequeños.
  • Ingresos por intereses: los bancos pagan intereses en algunas cuentas bancarias.
  • Cheques con fondos insuficientes (NSF): Cuando un cliente deposita un cheque en una cuenta pero la cuenta del emisor del cheque tiene una cantidad insuficiente para pagar el cheque, el banco deduce de la cuenta del cliente y rsquos el cheque que se acreditó previamente. Luego, el cheque se devuelve al depositante como un cheque sin fondos.

Hoy en día, muchas empresas utilizan software de contabilidad especializado en conciliación bancaria para reducir la cantidad de trabajo y ajustes necesarios y permitir actualizaciones en tiempo real.

Procedimiento de conciliación bancaria

  1. En el extracto bancario, compare la lista de cheques y depósitos emitidos por la compañía y los rsquos con los cheques que se muestran en el extracto para identificar los cheques sin liquidar y los depósitos en tránsito.
  2. Usando el saldo de efectivo que se muestra en el extracto bancario, vuelva a sumar los depósitos en tránsito.
  3. Deduzca los cheques pendientes.
  4. Esto proporcionará el saldo en efectivo ajustado del banco.
  5. A continuación, utilice el saldo de caja final de la empresa y los rsquos, agregue los intereses devengados y el monto de los documentos por cobrar.
  6. Deduzca los cargos por servicios bancarios, las multas y los cheques sin fondos. Esto llegará al saldo de caja ajustado de la empresa.
  7. Después de la conciliación, el saldo bancario ajustado debe coincidir con el saldo de caja ajustado final de la empresa.

Ejemplo

XYZ Company está cerrando sus libros y debe preparar una conciliación bancaria para los siguientes elementos:

  • El extracto bancario contiene un saldo final de $ 300,000 el 28 de febrero de 2018, mientras que el libro mayor de la empresa y rsquos muestra un saldo final de $ 260,900
  • El extracto bancario contiene un cargo por servicio de $ 100 por operar la cuenta
  • El extracto bancario contiene ingresos por intereses de $ 20
  • XYZ emitió cheques por $ 50,000 que aún no han sido aprobados por el banco
  • XYZ depositó $ 20,000 pero esto no apareció en el extracto bancario
  • Un cheque por la cantidad de $ 470 emitido al proveedor de la oficina se declaró erróneamente en el diario de pagos en efectivo como $ 370.
  • El banco cobró un pagaré por cobrar de $ 9,800.
  • Un cheque de $ 520 depositado por la compañía se ha devuelto como NSF.

MontoAjuste a los libros
Saldo bancario final$300,000
Deducir: cheques sin liquidar– $50,000Ninguno
Agregar: Depósito en tránsito+ $20,000Ninguno
Saldo bancario ajustado$270,000
Saldo final del libro$260,900
Deducir: cargo por servicio– $100Gastos de débito, crédito en efectivo
Agregar: Ingresos por intereses+ $20Débito en efectivo, ingresos por intereses de crédito
Deducir: error en el cheque– $100Gastos de débito, crédito en efectivo
Agregar: pagaré por cobrar+ $9,800Débito en efectivo, notas de crédito por cobrar
Deducir: cheque NSF– $520Cuentas por cobrar deudas, efectivo a crédito
Saldo contable ajustado$270,000

Estado de conciliación bancaria

Después de registrar los asientos de diario para los ajustes en el libro de la empresa y rsquos, se debe producir un estado de conciliación bancaria para reflejar todos los cambios en los saldos de efectivo de cada mes. Esta declaración es utilizada por los auditores para realizar la auditoría de fin de año de la empresa.

Descarga la plantilla gratuita

Ingrese su nombre y correo electrónico en el formulario a continuación y descargue la plantilla gratuita ahora.


REGLAS EXPONENCIALES - Regla 3

Regla 3: Cuando hay dos o más exponentes en la misma base, multiplícalos.

Ejemplo 1: se puede escribir. Según la Regla 1, podemos sumar los exponentes. ahora se puede escribir. Según la Regla 3, podríamos haber ido directamente a la respuesta multiplicando los exponentes

Ejemplo 2: simplificar. Según la Regla 3, la respuesta es.

Ejemplo 3: simplificar. La expresión se puede escribir

Puedes ir directamente a la respuesta multiplicando todos los exponentes.

Ejemplo 4: simplificar. La solución es la siguiente:

Si desea revisar otro ejemplo, haga clic en Ejemplo.

Trabaja los siguientes problemas. Si desea verificar la respuesta y revisar la solución, haga clic en Responder.

Problema 4: Si invirtió $ 5,000 en una cuenta bancaria que paga 12% de interés anual compuesto mensualmente, y deja el dinero en la cuenta durante cinco años, ¿cuánto dinero habrá en su cuenta después de cinco años?

Problema 5: Tiene $ 1,000 en su cuenta y necesitará $ 3,000 en diez años. Decide invertir su dinero de la siguiente manera: Invierte los $ 1,000 durante tres años al 12% compuesto mensualmente. Luego, toma los ingresos y los invierte durante un año al 11% compuesto semanalmente. Luego, toma los ingresos y los invierte durante dos años al 10% compuesto diariamente (360 días en un año bancario). ¿Cuánto dinero tendrías en el banco después de los seis años? ¿Cuánto interés necesitará obtener si invierte los ingresos de los últimos cuatro años compuestos anualmente?


Los estudiantes que escriban el Concurso Euclid y el Concurso Canadiense de Matemáticas para el último año pueden querer revisar el importante material fundamental cubierto por las lecciones y ejercicios de nuestros recursos de material didáctico abierto de grado 12.

  • El generador de conjuntos de problemas de CEMC permite a cualquiera crear conjuntos aleatorios de problemas de concursos anteriores de Gauss, Pascal, Cayley y Fermat con la opción de personalizar los temas tratados.
  • el eWorkshop de Pascal, Cayley y Fermat
  • el taller electrónico Euclid
  • el Manual de recursos de matemáticas para el Concurso Euclid
  • Programas de ejemplo de Canadian Computing Competition y enlaces de software útiles para Beaver Computing Challenge

CEMC
Universidad de Waterloo, MC 6203
200 University Avenue West
Waterloo, Ontario, Canadá N2L 3G1
Teléfono: 519888 4808
Fax: 519746 6592


Para el ahorrador, hay una ventaja de capitalizar con más frecuencia. Si se fija la tasa de interés nominal y el tiempo total en que la cuenta cobra intereses, la capitalización más frecuente produce más interés. En el análisis a continuación, asumimos que el tiempo total es un número entero múltiplo de períodos de capitalización.

Es bien sabido que para x en el intervalo [0,1), tenemos ln (1 + x) & gt = x - x 2/2. Si sustituimos x por r / K y asumimos que r & gt0 y K & gtr, encontramos que

ln (1 + r / K) - r / (K + r)) & gt = (K-r) r 2 / (2 K 2 (K + r)) & gt 0

["ln" se refiere al logaritmo natural, el logaritmo a la base e.] Tenga en cuenta que la derivada existe y es positiva cuando P 0 , r, K y T son todos positivos y K & gt r (¡que son suposiciones naturales sobre una cuenta de ahorros!). Dado que la derivada es positiva, la función original f (K) aumenta. Por tanto, valores más grandes de K hacen que f (K) sea más grande. Si agrandamos K y también hacemos que KT sea un número entero, entonces f (K) coincide con PAG KT . Por lo tanto, la capitalización con mayor frecuencia produce más interés (sujeto a la suposición de que T es un múltiplo entero del período de capitalización). Si T no es un múltiplo del período de capitalización, la conclusión depende en gran medida de las políticas de la cuenta sobre retiros en medio de un período de capitalización. Por ejemplo, en algunos certificados de depósito, el banco puede cobrar una multa sustancial por retiro "anticipado".